Renewable Fuels for the Diesel Market

9th ISCC Global Sustainability Conference
February 14, 2019
Safe Harbor Statement

This presentation contains certain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 as amended, including statements regarding the possible retroactive reinstatement of the BTC for 2018, the estimated benefits to 2018 Adjusted net income and Adjusted EBITDA if the BTC is retroactively reinstated, our expectations regarding fourth quarter results and the possible joint development of a renewable diesel plant with Phillips 66. These forward-looking statements are based on current expectations, estimates, assumptions and projections that are subject to change, and actual results may differ materially from the forward-looking statements. Factors that could cause actual results to differ materially include, but are not limited to, potential changes in governmental programs and policies requiring or encouraging the use of biofuels, including RFS2; availability of federal and state governmental tax incentives and incentives for biomass-based diesel production, including that the BTC may not be retroactively reinstated for 2018 or that it may be reinstated on less favorable terms; changes in the spread between biomass-based diesel prices and feedstock costs; the future price and volatility of feedstocks; the future price and volatility of petroleum and products derived from petroleum; risks associated with fire, explosions, leaks and other natural disasters at our facilities; the effect of excess capacity in the biomass-based diesel industry; unanticipated changes in the biomass-based diesel market from which we generate almost all of our revenues; seasonal fluctuations in our operating results; competition in the markets in which we operate; our dependence on sales to a single customer; technological advances or new methods of biomass-based diesel production or the development of energy alternatives to biomass-based diesel; our ability to successfully implement our acquisition strategy; our ability to generate revenue from the sale of renewable chemicals, fuels and other products on a commercial scale and at a competitive cost, and customer acceptance of the products produced; whether our Geismar biorefinery will be able to produce renewable diesel consistently or profitably; and other risks and uncertainties described in REG's annual report on Form 10-K for the year ended December 31, 2017.

All forward-looking statements are made as of the date of this presentation and REG does not undertake to update any forward-looking statements based on new developments or changes in our expectations.
REG converts waste oils, fats, and greases into high quality renewable fuels and chemicals to meet growing global demand for cleaner products.
Nr. 1 in biomass-based diesel in North-America & leader in waste biodiesel in Continental Europe

13 Biomass-Based Diesel Plants \[\rightarrow\] 575 MMGY Effective Capacity\(^1\)

Note: 1. Effective capacity for 2017 - Represents the maximum average throughput that satisfies certain defined technical constraints

Source: REG Analysis

Copyright 2019 Renewable Energy Group, Inc.
Production Network

Crude Feedstock Capable

<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert Lea, MN</td>
</tr>
<tr>
<td>Danville, IL</td>
</tr>
<tr>
<td>Emden, Germany</td>
</tr>
<tr>
<td>Geismar, LA</td>
</tr>
<tr>
<td>Madison, WI</td>
</tr>
<tr>
<td>Mason City, IA</td>
</tr>
<tr>
<td>New Boston, TX</td>
</tr>
<tr>
<td>Newton, IA</td>
</tr>
<tr>
<td>Oeding, Germany</td>
</tr>
<tr>
<td>Seneca, IL</td>
</tr>
</tbody>
</table>

Refined Feedstock

<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grays Harbor, WA</td>
</tr>
<tr>
<td>Houston, TX</td>
</tr>
<tr>
<td>Ralston, IA</td>
</tr>
</tbody>
</table>

Fermentation Facility

<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okeechobee, FL</td>
</tr>
</tbody>
</table>

Feedstock Proc. Facility

<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burlo, Germany</td>
</tr>
</tbody>
</table>
World Demands Cleaner Fuel Solutions

Historic and Forecasted Global BBD Production

- **Biodiesel Mixture Excise Tax Credit (BTC)**: $1/gal. of biodiesel blended fuel, first enacted as part of the American Jobs Creation Act of 2004
- **RFS2 Enacted**: Policy mandating the use of BBD for obligated parties
- **New York Bioheat Mandate**: New York City passes 2% Bioheat mandate
- **Minnesota B20 Blend Mandate**: Implementation of B20 blend between April 1 and September 30 each year
- **IL Extends B11 Fuel Tax Exemption**: 10 year extension through 2030
- **EU Passes Renewable Energy Directive (RED)**: 20% of energy consumed in the EU is renewable by 2020

Key Events:
- **RFS1 Implemented**: Policy mandating the use of biomass based diesel (BBD) for obligated parties
- **California LCFS Passed**: Implementation starting in 2010
- **BTC Reinstated**: Income tax credit for blended fuel retailers
- **IIA Tax Credit**: Extended production and retail tax credits
- **Minnesota B2 Blend Mandate**: Implementation of B2 blend requirement
- **BTC Reinstated**: 2% Bioheat mandate
- **BTC Reinstated**: B11 tax reduced by $0.03
- **BTC Reinstated**: 10 year extension through 2030

Source: LMC International, National Biodiesel Board

Copyright 2019 Renewable Energy Group, Inc.
Biomass-based diesel basics

- **Biodiesel**: Fatty acid methyl esters, produced from reacting fats and oils with methanol

- **Renewable Diesel (HVO)**: Hydrocarbon-only diesel fuel made by processing fats & oils through hydrotreating and isomerization

- **Co-Processed Renewable Diesel**: Is a partially renewable diesel fuel created when fats, oils, or other renewable biomass is processed together with petroleum in the same process unit or refinery.
Comparison of Critical Properties

<table>
<thead>
<tr>
<th></th>
<th>Biodiesel</th>
<th>Stand-Alone HVO</th>
<th>Co-Processed HVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud Point of neat fuel</td>
<td>1 – 8 °C</td>
<td>-10 – -14 °C</td>
<td>25 – 30 °C</td>
</tr>
<tr>
<td>GHG Reduction compared to petro diesel</td>
<td>88%</td>
<td>87%</td>
<td>?</td>
</tr>
</tbody>
</table>

- Biodiesel has higher GHG savings & is cheaper
- HVO has better winter performance & allows higher blends
Biomass-based Diesel Overview

Renewable Diesel and Biodiesel

Feedstock
- Both processes can utilize any fat or oil.
 - Animal fat
 - Vegetable Oil

Process
- **Renewable Diesel**
 - React with hydrogen (hydrotreat & isomerize)
 - Convert 3-carbon backbone to renewable propane
 - Convert oxygen to H₂O

- **Biodiesel**
 - React with methanol (transesterification)
 - Convert 3-carbon backbone to glycerol
 - Oxygen remains in fuel molecule

Product
- **Paraffin**
- **FAME**

Specification
- **Renewable Diesel**
 - Meets the diesel spec, EN 590
 - Molecules are familiar constituents of ULSD (petroleum diesel)
 - Paraffinic fuel

- **Biodiesel**
 - Meets the biodiesel spec, EN 14214
 - Different molecules than those in petroleum diesel
 - Oxygenated fuel
Biomass-based diesel feedstocks

- Soybean Oil
- Distillers Corn Oil
- Beef Tallow
- Choice White Grease
- Used Cooking Oil
- Algae Oil
- Rapeseed Oil
- Carinata Oil
Biomass-based diesel feedstocks

Triglyceride with 3 saturated fatty acids

Triglyceride with 3 unsaturated fatty acids
What is Biodiesel?

- Biodiesel is **methyl esters** made from biological oils and fats (triglycerides) by transesterification.

Raw materials

- Methanol
- Methanol
- Methanol

Triglyceride

Glycerin

Products

- Methyl ester
- Methyl ester
- Methyl ester

Transesterification reaction
What is Renewable Diesel?

- Renewable Diesel is **hydrocarbons** made from biological oils and fats (triglycerides) by **hydrotreating**.
Biodiesel example

Oleic acid to methyl oleate

Oleic acid

Methyl oleate
Hydrotreating example

Oleic acid to C18 n-paraffin

Oleic acid

C18 n-paraffin
Isomerization example

Isomerization dramatically reduces melting point

C18 n-paraffin (C\textsubscript{18}H\textsubscript{38})

Melting point > 28 °C

C18 isoparaffin (C\textsubscript{18}H\textsubscript{38})

Melting point < -7 °C
HVO production samples

- Left: Crude Feedstock
 - Middle: Hydrocarbons after hydrotreating
 - Right: Finished (isomerized) HVO
Benefits of HVO (Renewable Diesel)

• Paraffinic fuel, which means:
 – Exceptional Cetane number
 • Greater than 65 (EU diesel specification requirement is 51)
 • Cetane number is an indicator of combustion quality
 – Reduced tailpipe emissions
 • In particular, NOx and carbon monoxide
 • Also particulate matter and total hydrocarbons
 • Virtually no sulfur

• Desirable Cloud Point
 – Cloud Point ranges from -10 °C to -20 °C
 – Winter pipeline specs for diesel are around -10 °C

• Can be blended at any level with diesel and biodiesel
 – Some users consider a 50% maximum (elastomer compatibility)
Benefits of Biodiesel

• Oxygenated fuel, which means:
 – Reduced tailpipe emissions
 • Sulfur, carbon monoxide, hydrocarbons and particulates
 • Burn fuel instead of losing it out the exhaust
 – Enhanced lubricity
 • Excellent for ULSD and HVO (Renewable Diesel)
 • No lubricity additives needed with B2 or higher blends

• Comparable to vegetable oil for transport & handling requirements

• Can be blended at high level with diesel and HVO (Renewable Diesel)
 – 20% is a common maximum for general purpose use
 – Higher quality biodiesel performs better with HVO (Renewable Diesel) (CSFBT test)
Biomass-based diesel emissions

Note: Emissions estimates are derived from data for a 2006 Cummins ISM 370 on Federal Test Procedure driving cycle, as reported in Durbin, Thomas D., et al. "CARB Assessment of the Emissions from the Use of Biodiesel as a Motor Vehicle Fuel in California “Biodiesel Characterization and NOx Mitigation Study”." California Air Resources Board: Sacramento, CA (2011). Comparisons with Federal ULSD were conducted based on a linear comparison with CARB ULSD data. All biodiesel data shown are taken as an average of the means of high and low cetane biodiesel emissions results, where available.
Elastomer impact of diesel fuel options

- Volume change results indicate the extent of swell that occurs when an elastomer seal is exposed to fuel.
- Volume change is a critical property for predicting seal performance in an engine.
- Viton® seals (or equivalent) are typical for modern engines, while older engines often have NBR (nitrile rubber) seals.
California Lifecycle Analysis Example

Fuel Lifecycle for Used Cooking Oil Biodiesel

Used Cooking Oil Biodiesel
26 gCO₂e/MJ*
* Totals may not sum due to rounding

Biogenic CO₂ Emissions

Other Tailpipe Emissions
1 g/MJ

2 g/MJ

Transport Blend with CARISOB
15 g/MJ

Biorefining
2 g/MJ

5 g/MJ

Transport

Oil Filtration/Rendering
1 g/MJ

Used Cooking Oil Collection & Transport

Notes: Numbers are for illustrative purposes only
Source: California Air Resources Board
GHG Values in Annex V

<table>
<thead>
<tr>
<th>waste ⇒ cooking ⇐ vegetable or animal oil biodiesel</th>
<th>88 ⇒ 83 ⇐ %</th>
<th>83 ⇒ 77 ⇐ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒ animal fats from rendering biodiesel ⇐</td>
<td>⇒ 79% ⇐</td>
<td>⇒ 72 % ⇐</td>
</tr>
</tbody>
</table>

- **Final values:**
 - Waste cooking oil: 88% / 84%
 - Animal fats: 84% / 78%

- 1% above UCO and Animal fats based HVO (even higher in real world)

⇒ **WASTE BIODIESEL**

- SAVES MORE GHG

- IS CHEAPER