

Calculating the GHG impact of RFNBOs – reflections on methodology and calculation

Our focus for today

- 1 General approach for GHG calculation
- 2 Methodology for RFNBOs
- 3 Emissions savings

Meo Carbon Solutions is a solution provider in areas of sustainability, renewable and circular resources, deforestation-free supply chains and certification

Working steps and information exchange to construct a GHG calculator

Mapping of supply chain and definition of system boundaries

Preparation of data request templates

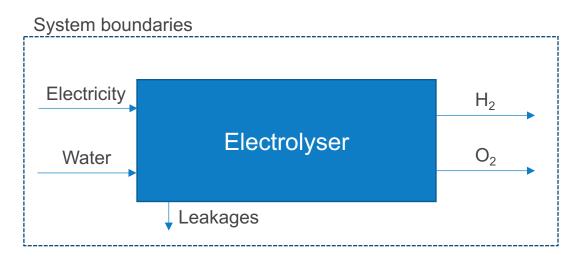
Filled-in data request templates from project partner

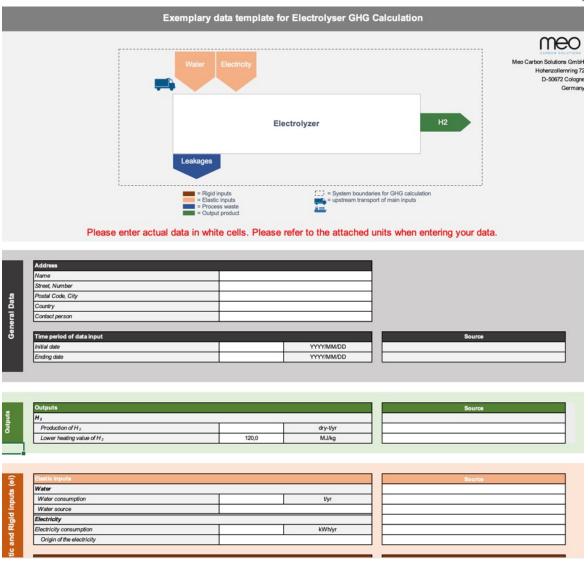
Set up of first draft GHG calculator and analysis of relevant emission factors

Feedback loops to finalize data and fill-in gaps

Provision of final fully transparent GHG calculator to project partner.

Identification of core impact categories and analysis of improvement potential.


Future updates possible.


Usable for certification audits

Definition of system boundaries and data collection

- Identification of all processes and inputs in the life cycle which result in GHG emissions or removals.
- Analysis of renewable electricity source and emission factors.

The methodology for GHG accounting is included in the Delegated Act on Renewable Fuels of Non-Biological Origin

$$E = e_i + e_p + e_{td} + e_u - e_{ccs}$$

Where:

 $E = total emissions from the use of the fuel in g <math>CO_2/MJ$

 $e_i = e_{i \text{ elastic}} + e_{i \text{ rigid}} - e_{ex-use}$: supply of inputs

e_{i elastic} = emissions from elastic inputs

e_{i rigid} = emissions from rigid inputs

e_{ex-use} = emissions from inputs' existing use or fate

 e_p = emissions from processing

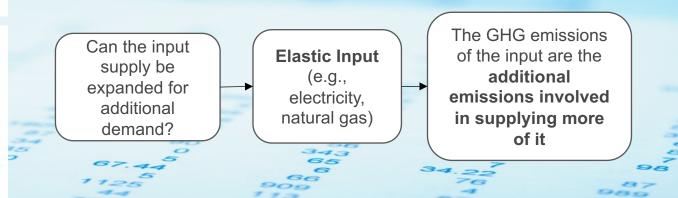
 e_{td} = emissions from transport and distribution

 e_u = emissions from combusting the fuel

 e_{ccs} = emission savings from carbon capture and geological storage

Source: Annex on Delegated Act on Renewable Fuels of Non-Biological Origin - GHG methodology

Is the input rigid or elastic?

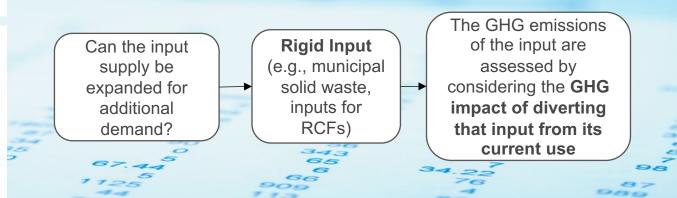

The new formula element e_i: elastic inputs

 $e_i = e_i$ elastic + e_i rigid - e_{ex-use}

Elastic inputs

- Elastic inputs are those whose supply can be increased to meet extra demand.
- Emissions should include all emissions arising due to their production over the whole supply chain.
- These emissions shall take in account the extraction of the primary energy required to make the input, processing and transportation of the input.

Source: Annex on Delegated Act on Renewable Fuels of Non-Biological Origin – GHG methodology


The new formula element e_i: rigid inputs

$$e_i = e_i$$
 elastic + e_i rigid - e_{ex-use}

Rigid inputs

- Rigid inputs are those whose supply cannot be expanded to meet extra demand.
- Emissions shall include the emissions resulting from the diversion of those inputs from a previous or alternative use.
- These emissions shall take into account the loss of production of electricity, heat or products that were previously generated using the input.

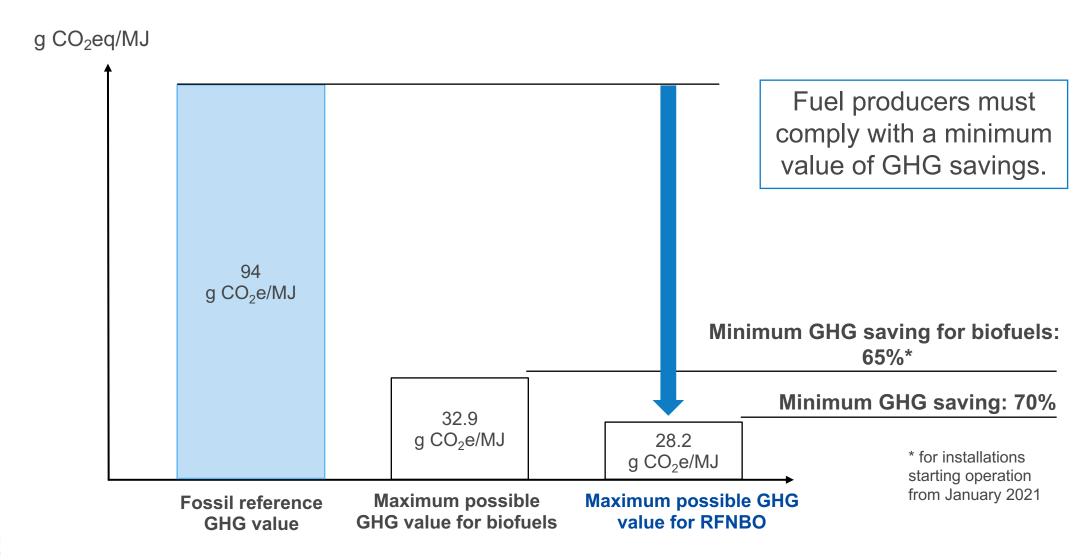
Source: Annex on Delegated Act on Renewable Fuels of Non-Biological Origin – GHG methodology

The new formula element e_i: existing use or fate

$$e_i = e_i$$
 elastic + e_i rigid - e_{ex-use}

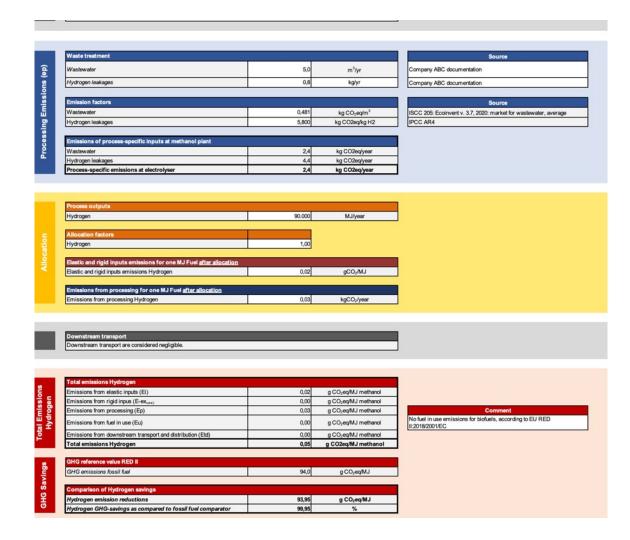
Emissions from existing use or fate

- Emissions from existing use or fate include all emissions in the existing use or fate of the input that are avoided when the input is used for fuel production.
- Include the CO₂ equivalent of the carbon incorporated in the chemical composition of the fuel that was or would have otherwise been emitted into the atmosphere.



Source: Annex on Delegated Act on Renewable Fuels of Non-Biological Origin – GHG methodology

Emissions savings must be calculated under the RED framework



Meo supports companies with the calculation of GHG emissions savings for RFNBOs by developing customized GHG calculators

Brussels, XXX [...](2022) XXX draft ANNEX

ANNEXES

to the

COMMISSION DELEGATED REGULATION (EU) .../...

on establishing a minimum threshold for greenhouse gas emissions savings of recycled carbon fuels and specifying a methodology for assessing greenhouse gas emissions savings from renewable liquid and gaseous transport fuels of non-biological origin and from recycled carbon fuels

Key takeaways

- Differentiation between elastic and rigid inputs is key, as it has an impact in GHG results.
- Emissions savings for RNFBOs are 70%.
- Calculation of GHG emission savings for RFNBO will be mandatory under the RED framework.
- The documentation available is still a draft. Further requirements might be introduced and/or methodology might change once final documentation is available.
- Nevertheless, GHG calculations can already be performed based on available documentation.
- Identification of core impact categories and analysis of improvement potential is already possible today.

Feel free to get in touch with us!

Meo Carbon Solutions GmbH Hohenzollernring 72, 50672 Cologne

Email: info@meo-carbon.com, nevares@meo-carbon.com

Phone: 0221 / 508020 20

