

SMART AG PRACTICES FOR LOW-CI SAF FEEDSTOCK PRODUCTION

September 2023

FORWARD LOOKING STATEMENT

Any statements in this presentation about Gevo's future expectations, plans, trends, outlook, projections and prospects, and other statements containing the words "believes," "anticipates," "plans," "estimates," "expects," "intends," "may," "will," "would," "could," "can" and similar expressions, constitute forwardlooking statements within the meaning of Section 21E of the Securities Exchange Act of 1934, as amended (the "Exchange Act"), and the Private Securities Litigation Reform Act of 1995, including, without limitation, statements related to our growth and future operating results and trends, our renewable natural gas ("RNG") project, our proprietary systems and technology, Verity Carbon Solutions, carbon intensity ("CI"), our Net-Zero Integrated Technology, our strategy, plans, objectives, expectations (financial or otherwise) and intentions, future financial results and growth potential, including our Net-Zero 1 Project, the timing and status of development of our projects, our ability to produce net-zero CI fuels and chemicals, our ability to finance and construct production facilities to produce products, intellectual property and other statements that are not historical facts. For this purpose, any statement that is not a statement of historical fact should be considered a forward-looking statement. We cannot assure you that our estimates, assumptions and expectations will prove to have been correct. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, including risks relating to, among others: financing and supply chains, and global and U.S. economic conditions (including inflation and rising interest rates); and factors discussed in the "Risk Factors" of our most recent Annual Report on Form 10-K and in other filings that we periodically make with the Securities and Exchange Commission (the "SEC"). In addition, the forwardlooking statements included in this presentation represent our views as of the date of this presentation. Important factors could cause actual results to differ materially from those indicated or implied by forward-looking statements, and as such we anticipate that subsequent events and developments will cause our views to change. Except as required by applicable law, we undertake no intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, and readers should not rely on these forward-looking statements as representing our views as of any date subsequent to the date of this presentation.

OVERVIEW OF GEVO, INC. (NASDAQ: GEVO)

- Founded in 2005
- Rebooted in 2007 to pursue alcohols to hydrocarbons
- Number of employees: 97

Net-Zero Fuels and Chemicals

Total Addressable Market (TAM) 1,500BGPY of Fuels, ~695M mt of Nutritional Products and 390M mt of Chemicals and Plastics⁽²⁾

- Drop-in Products for Jet fuel, Gasoline, Diesel, Chemicals and Nutritional Products
- Develop Projects, Invest in Capacity, License, Enable, Monetize Carbon Value

Corporate Headquarters Englewood, CO

R&D, Demo Facility Luverne, MN

Jet Fuel & Gasoline Plant Silsbee, TX⁽¹⁾

Net-Zero 1 In financing phase, Lake Preston, SD

Gevo RNG Facility Operating in NW Iowa

Sources: US EIA, Statista.

(1) Owned by South Hampton Resources, Inc. and operated in partnership with Gevo.

(2) Sources: US EIA short term energy outlook May 2023. BNEF "Decarbonizing Petrochemicals", January 2022.

WHAT WE DO

(1) Project is currently being developed and is in project financing stage

HOW WE PLAN TO DRIVE CI DOWN: DECARBONIZATION DEMONSTRATED THROUGH HIGH-QUALITY MODELING WITH ARGONNE GREET

https://doi.org/10.2172/1046913; https://greet.es.anl.gov/; https://publications.anl.gov/anlpubs/2012/07/73815.pdf

💦 gevo

WORK WITH FARMERS, REDUCE FOSSIL INPUTS, SEQUESTER PROCESS EMISSIONS, AND DRIVE THE GHG FOOTPRINT DOWN

WHAT ARE CLIMATE SMART AGRICULTURAL PRACTICES?

1. Reduced Tillage / No-Till

- Less diesel fuel usage than conventional till
- Less soil disturbance & erosion

2. Fertilizer Application:

- 4R Nitrogen Placement
 - (right source, rate, time, place)

3. Cover crops

- Less nutrient runoff & soil erosion
- More CO2 sequestered

4. Manure Application

• Non-chemical fertilizer

Impact = improved soil health & resiliency

No Till

WHAT IS THE POTENTIAL CARBON INTENSITY IMPACT?

"You can't improve what you don't measure"

gevo

HOW ARE CLIMATE SMART AG PRACTICES REFLECTED IN LOW-CARBON FUELS PROGRAMS?

CI CALCULATION USING ANL GREET FD-CIC

- Emissions from fertilizers, fuel, lime, & pesticides are calculated per traditional attributional LCA.
- Soil Organic Carbon (SOC) emissions/reductions come from a lookup tool based on selection of management practices and county+state location.
 - SOC values are modelled in the CENTURY biogeochemical model for each county and combination of practices, then normalized to a baseline of typical practices - average tillage practice for the particular state, no manure, and no cover crops.

	Annualized farming input parameters				
	1.0) Farm size	User Specific Value	GREET Default V	alue Unit	
	1.0.1) Farm size		1000	1000 acre	
	1.1) Yield	User Specific Value	GREET Default V	alue Unit	
	1.1.1) Corn yield		178.4	178.4 Bushels/acre	
	1.2) Energy	User Specific Value	GREET Default V	'alue Unit	
	1.2.1) Diesel		7.2	7.2 Gallons/acre	
	1.2.2) Gasoline		1.3	1.3 Gallons/acre	
	1.2.3) Natural gas		87.0	87.0 ft3/acre	
	1.2.4) Liquefied petroleum gas		2.2	2.2 Gallons/acre	
	1.2.5) Electricity		69.3	69.3 kWh/acre	
	1.3) Nitrogen Fertilizer	User Specific Value	GREET Default V	alue Unit	
	1.3.1) Ammonia		49.0	49.0 lbs N/acre	
	1.3.2) Urea		36.3	36.3 lbs N/acre	
	1.3.3) Ammonium Nitrate		3.2	3.2 lbs N/acre	
	1 3 4) Ammonium Sulfate		3.2	3.2 lbs N/acre	
	1 3 5) Urea-ammonium nitrate soluti	n	50.5	50.5 lbs N/acre	
	1 3 6) Monoammonium Phosphate		6.3	6.3 lbs N/acre	
	1.3.7) Diammonium Phosphate		9.5	9.5 lbs N/acre	
	1.4) Phosphorus Fertilizer	User Specific Value	GREET Default V	alue Unit	
	1.4.1) Monoammonium Phosphate	oser opeenie varae	29.6	29.6 lbs P2O5/acre	
	1.4.2) Diammonium Phosphate		29.6	29.6 lbs P2O5/acre	
	1 5) Dotach Fertilizer	User Specific Value	GREET Default V	alue Unit	
	1.5.1) K2O	oser speeme value	59.9	59.9 lbs K2O/acre	
	1 C) Line	Uses Constitution	CREET Defeultiv		
	1.61) C>CO2	User specific value	GREET Default V	F72 0 lbs/ssre	
	1.6.1) Cacos		575.0	575.0 Ibs/acre	
	1.7) Herbicide	User Specific Value	GREET Default V	alue Unit	
oil or	ganic carbon lookup	Based on User Specific Selec	tion Based on GREET Def	ault Selection	
3.1.) Cover crop		Cover	crop	No cover crop	
3.2.) Manure		No ma	nure	No manure	
3.3.) Tillage		N	otillRe	educed tillage Refresh	
3	.4.) SOC emissions	-	535.7 ^r	0.5 kg C/ha/yr	

MEASURING, REPORTING AND VERIFYING FARM DATA

💸 gevo

Field Overview				
Entity	Confidential			
Farm	Confidential			
Grower	Confidential			
Field	Field 150			
Field ID	#001565			
Acres	151.5			
Season	2021			
Yield (bushel /acre)	210.6			
Bushels	31.906 (810t)			
CI from emissions	14.3 gCO2e/MJ			
CI including SOC	-15 gCO2e/MJ			
Total potential CI contribution from feedstock	-0.7gCO2e/MJ			
National Corn Average CI	30.1gCO2e/MJ			

Data Input Sources Fertilizer, Lime, Tillage, Granular Herbicide, Insecticides, Software Yield, Moisture, Cover Crops Fertilizer Chemical composition Suppliers **MyJohnDeere** Diesel, Gasoline Platform Electricity, Nitrogen Declarative Management Laboratories/ Manure, Soil sampling, **Supplier Reports** Custom Applications, LPG GIS Practice verifications, **Google Earth** Land Use Change check Certification Farm verified

Real field-level results showing potential -31 CI reductions in SAF with precision ag, cover crops and conservation tillage

Now: Developing fully integrated and automated system for biofuels from field to gallon.

*Calculated as potential CI contribution in final SAF, excluding LUC

**Source: Mi. Wang, Argonne National Lab, "Updated Life-cycle Analysis of Biofuels with the GREET Model" Presentation at Task 39 of IEA Bioenergy TCP, April 2, 2020

FIELD TO FLIGHT DMRV* AND END-TO-END TRACEABILITY

Starting case to track sustainability attributes such as Carbon Intensity (CI) through the biofuel value chain

*Digital Measuring, Reporting and Verification

USDA GRANT FOR CLIMATE-SMART AGRICULTURE

U.S. Department of Agriculture Chooses Gevo's Climate-Smart Ag Proposal for Grant Worth Up to \$30 Million

Google

gevo

The GEVO Climate-Smart Farm-to-Flight Program

The Project aims to create critical structural climate-smart market incentives for low carbonintensity corn as well as to accelerate the production of sustainable aviation fuel to reduce the sector's dependency on fossil-based fuel. This project includes an immediate market opportunity to sell climate-smart, low-climate-impact corn.

Lead Partner

Gevo, Inc.

Other Major Partners:

Southwest Iowa Renewable Energy, LLC, Google, Farmers Edge, EarthOptics, South Dakota State University, Regen Ag Labs, Yard Stick, Double H Ag Services, Farmers Edge, AgSpire, PrairieFood, Stine Seed Farm, Holganix, Trace Genomics, MidState Agronomy, Double H Ag Services, Colorado State University, Iowa State University, Standing Rock (SAGE) Renewable Energy Power Authority

> Primary States Expected:

MN, SD, NE, IA, Tribal

Major Commodities:

Corn

Approximate Funding Ceiling \$30,000,000

HOLGANIX Beliouring Factors at 10

Thank you

345 Inverness Drive South Building C Suite 310 Englewood, Colorado 80112 gevo.com