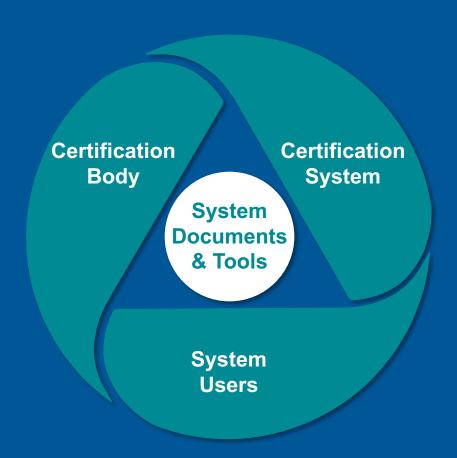


Key elements for further strengthening sustainability certification


Andreas Feige, Managing Director, ISCC System GmbH ISCC Regional Stakeholder Meeting Southeast Asia, 25 October 2023, Jakarta

Credible sustainability certification relies on the coordinated interplay of the three parties

Four elements are key for a coordinated interplay of the three parties

Training

 System requirements and procedures

Monitoring

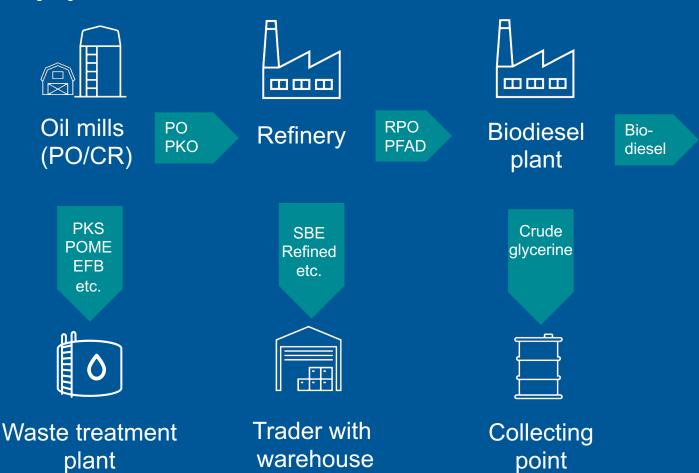
ISCC is currently focussing improvement measures on four areas

Communication

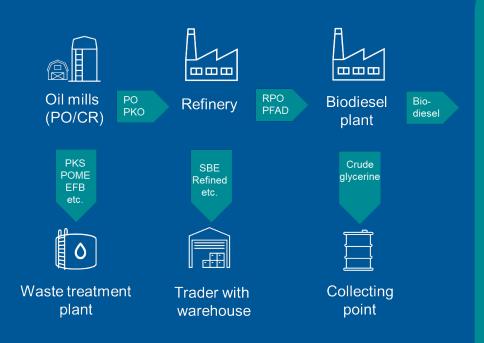
Training

System requirements and procedures

Monitoring

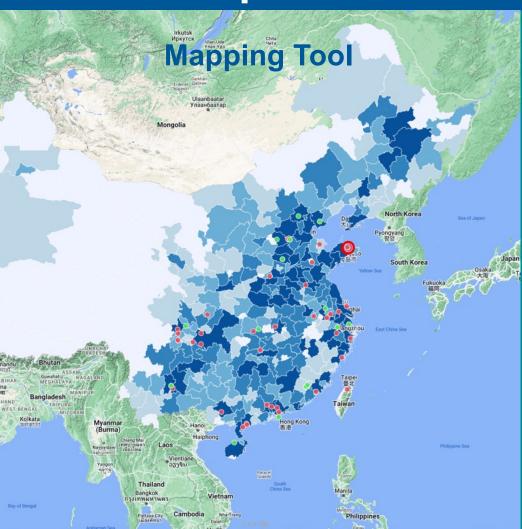

Focus of improvement measures

- Risk assessment of the location layout and respective certification scopes
- 2. Technical guidance for auditors
- 3. Integrity of w/r material uptake and sustainability declarations
- 4. Automation of procedures


1. Risk assessment of the location layout and respective certification scopes (1)

Certificate scopes & materials Materials Scopes PO POME oil EFB oil **PFAD** SBE Waste pressings w/r processings TRS of veg/animal oil WH **PKS PKO** Refined PO Stearin Olein **Biodiesel** Crude glycerine

1. Risk assessment of the location layout and respective certification scopes (2)


Prerequisites for conducting an audit

- The set-up and respective material flows subject to certification are properly documented
- All certification scopes and materials are in use (pro forma scopes and materials cannot be accepted)
- The risk assessment is performed prior to the audit and fully documented
- The audit plan reflects the risk assessment's findings

1. ISCC is developing a mapping tool supporting audit planning and the identification of potential risks

Visualization of:

- Location layout
- Distances between locations
- Overlapping of CPs & PoOs

Verification of:

- PoO existence
- Reported volumes (plausibility check with regional potential)

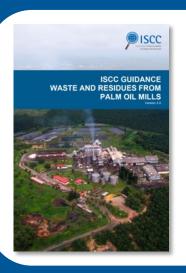
2. ISCC is strengthening the technical guidance documentation for auditors

capability of

processing

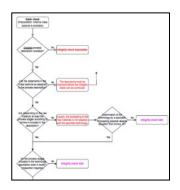
material

the declared


w/r material

Plausibility of

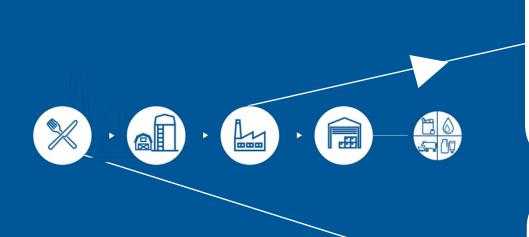
2. Selected examples of technical guidance documentation for auditors



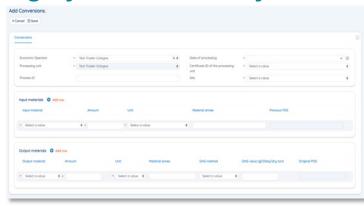
Material eligibility & yield plausibility

Palm Oil Mill with Vertical Sterilizer (approximate figures)					
Oil content of sterilizer condensate	0.5 kg/ton FFB ¹ – 17.4 kg/ton FFB ²				
Oil content of heavy phase	5.5 kg/ton FFB ³ – 11.4 kg/ton FFB ²				
Total POME oil content	6 kg/ton FFB – 28.8 kg/ton FFB				

Palm Oil Mill with Horizontal Sterilizer (approximate figures)				
Oil content of sterilizer condensate	0.5 kg/ton FFB ¹ – 2.1 kg/ton FFB ²			
Oil content of heavy phase	1.6 kg/ton FFB ² – 5.5 kg/ton FFB ³			
Total POME oil content	2.1 kg/ton FFB – 7.6 kg/ton FFB			


Assessment of processing technology for w/r materials

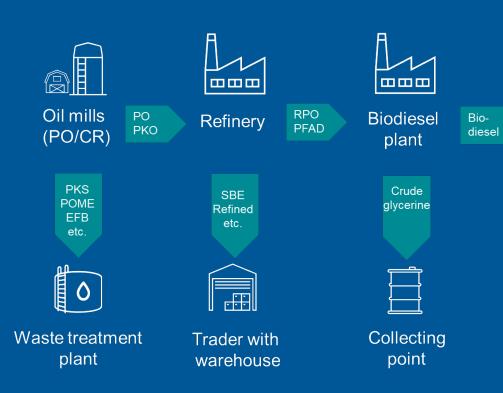
Raw material type	Pre-purification/ refining of the raw material	Acid catalysed esterification or transesterification	Alkaline catalysed transesterification	De-methanolisation and drying of the crude fatty acid methyl ester	Reprocess the heavy ph	de Velopine	rine wit
Vegetable oil or fat, refined or partially refined	N	N	R	R	0	10/000	
Crude vegetable oil or fat	R	0	R	R	0	0 100	5.
Used Cooking Oil (UCO) with low content of free fatty acids and low content of contaminations	0	0	R	R	0	0	~
Used Cooking Oil (UCO) with high content of free fatty acids and high content of contaminations	R	R	0	R	0	OR	0
Fatty acids from physical refining of vegetable oil	R	R	0	R	0	0	L
Palm oil mill effluent (POME)	R	R	0	R	0	OR	0

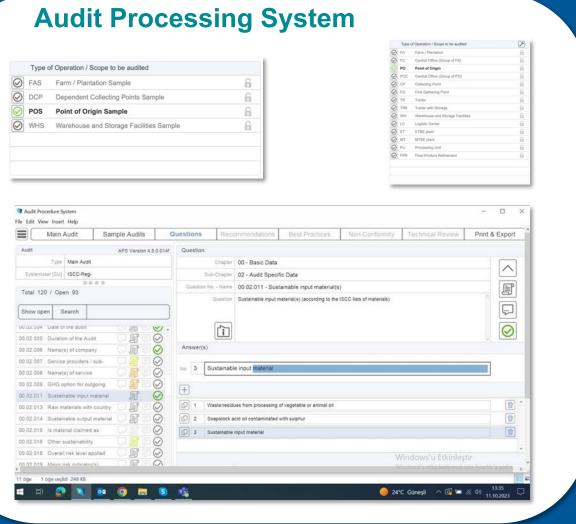


3. Integrity of w/r material uptake and sustainability declarations

ISCC database ensures integrity of sustainability declarations

ISCC Mobile App supporting material uptake



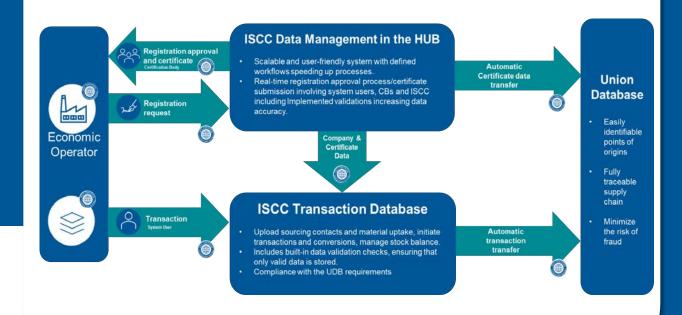


4. Automation of procedures – example ISCC APS System

Integrated database solutions supporting monitoring of daily operations

Communication

Training



System requirements and procedures

Monitoring

System Automation and Integration

Thank you!

ISCC System GmbH

Hohenzollernring 72, 50672 Cologne, Germany

www.iscc-system.org

