# **GREET SAF Overview**

Steffen Mueller; PhD Principal Economist University of Illinois Chicago Energy Resources Center

New Orleans, LA November 2023

UC ENERGY RESOURCES

# **Presentation Overview**

- GREET Introduction
- Important GREET Modules for SAF
  - GREET Aviation Module
  - GREET Feedstock Carbon Intensity Module: FD-CIC
- Impact of Climate Smart Agriculture on SAF Feedstock Emissions
- Impact of Carbon Capture and Sequestration on SAF Feedstock Emissions
- Modeling Comparison GREET / CORSIA



### **GREET Introduction**



#### **GREET®** Model

The Greenhouse gases, Regulated Emissions, and Energy use in Technologies Model

#### Presentation focuses on two GREET Modules important for SAF:

- FD-CIC Tool for Feedstock
   Farming
- Aviation Module

How to access GREET:

- 1. Go to: greet.anl.gov
- 2. Create account
- 3. Download Module
- 4. May have to adjust macro settings

Databases **GREET Model Platforms GREET** .Net **GREET Excel** Fuel-Cycle Model Vehicle-Cycle Model **GREET Tools** WTW Calculator **AFLEET Tool AWARE-US Model FD-CIC Tool Refinery Products VOC GREET Building Module GREET Aviation Module GREET Marine Module GREET-H**<sub>2</sub> Module **Decarbonization Model ICAO-GREET Model** 

GREET

Publications

The GREET model is a one-of-a-kind analytical tool that simulates the energy use and emissions output of various vehicle and fuel combinations. Sponsored by the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy. GREET offers two free platforms to use: the GREET.net model and the GREET Excel model.

To get a complete picture of the energy and environmental impacts of a technology, it is important to consider the full life cycle – from well to wheels for fuels and from raw material mining to vehicle disposal for automobiles.



#### **GREET News**

#### GREET 2022 rev1 Release

The Argonne National Laboratory's Systems Assessment Center is pleased to announce the 2022 rev

VEHICLE CYCLE (GREET 2 Series)



#### **Informing Policies and Regulations**

California Environmental Protection Agency

















- California-GREET is an adaptation of Argonne's GREET model
- Oregon Clean Fuels Program also uses an adaptation of Argonne's GREET model
- U.S. EPA uses GREET with other sources for Renewable Fuels Standard pathway evaluations
- National Highway Traffic Safety Administration for fuel economy regulation
- Federal Aviation Administration and International Civil Aviation Organization using GREET to evaluate aviation fuel pathways
- USDRIVE Well-to-Wheels Report
- U.S. Maritime Administration renewable marine energy options for IMO GHG intensity and sulfur limits
- U.S. Dept. of Agriculture bioenergy LCA and carbon intensity of farming practices
- Canadian Clean Fuel Standard for Environment and Climate Change Canada fuel pathways
- LCA results for use in different provisions of the 2021 Bipartisan Infrastructure Bill and the 2022 Inflation Reduction Act



#### There are ~50,000 registered GREET users globally



## **GREET Aviation Module**

#### **GREET** Aviation Module Instruction Manual

Uisung Lee, Xinyu Liu, Peter Chen, Noah Song, Michael Wang

Systems Assessment Center

Energy Systems Division

Argonne National Laboratory

March 2022



### **GREET Aviation Module**



Figure 3. The Dashboard of the GREET Aviation Module. (1) Pathway Selection, (2) Input Parameters, (3) Results (by MJ or gal fuel produced and used), (4) Input Contribution, (5) Results (by aircraft types).



# Big Levers for CI reduction:

- Feedstock
   Farming
- Fuel Production (including CCSU opportunities)
- iLUC

| eedstock                                                                                                                                      | ¥=     | ×,       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| Algae                                                                                                                                         |        |          |
| Camelina                                                                                                                                      |        |          |
| Canola                                                                                                                                        |        |          |
| Carinata                                                                                                                                      |        |          |
| Corn                                                                                                                                          |        |          |
| Jatropha                                                                                                                                      |        |          |
| Palm                                                                                                                                          |        |          |
| Soybean                                                                                                                                       |        |          |
| Coal                                                                                                                                          |        |          |
| Corn oil                                                                                                                                      |        |          |
|                                                                                                                                               |        |          |
| Corn stover                                                                                                                                   | ž      | ,<br>,   |
| Corn stover                                                                                                                                   |        |          |
| Corn stover                                                                                                                                   | ž      | ,<br>,   |
| Corn stover Conversion HEFA ATJ                                                                                                               | ¥=     | 5        |
| Corn stover Conversion HEFA ATJ Biological STJ                                                                                                | ž      |          |
| Corn stover Conversion HEFA ATJ Biological STJ Catalytic STJ                                                                                  | ¥=     |          |
| Corn stover<br>Conversion<br>HEFA<br>ATJ<br>Biological STJ<br>Catalytic STJ<br>Catalytic upgrading                                            | ¥=     |          |
| Corn stover<br>Conversion<br>HEFA<br>ATJ<br>Biological STJ<br>Catalytic STJ<br>Catalytic upgrading<br>Data Source                             | ¥=<br> |          |
| Corn stover<br>Conversion<br>HEFA<br>ATJ<br>Biological STJ<br>Catalytic STJ<br>Catalytic upgrading<br>Data Source<br>GREET                    | ¥=<br> | <b>x</b> |
| Corn stover<br>Conversion<br>HEFA<br>ATJ<br>Biological STJ<br>Catalytic STJ<br>Catalytic upgrading<br>Data Source<br>GREET<br>ICAO            | ¥=<br> |          |
| Corn stover<br>Conversion<br>HEFA<br>ATJ<br>Biological STJ<br>Catalytic STJ<br>Catalytic upgrading<br>Data Source<br>GREET<br>ICAO<br>(blank) | ¥≡<br> |          |
| Corn stover<br>Conversion<br>HEFA<br>ATJ<br>Biological STJ<br>Catalytic STJ<br>Catalytic upgrading<br>Data Source<br>GREET<br>ICAO<br>(blank) |        |          |

| Energy<br>Unit MJ<br>Functional unit MJ<br>LUC Inclu<br>Life-cycle GHGs = 42.29 g |         |            |            | Jet<br>e when av<br>J              | Water<br>gal<br>ailable | Er                                    | nissions<br>g<br>(USA) included      |  |
|-----------------------------------------------------------------------------------|---------|------------|------------|------------------------------------|-------------------------|---------------------------------------|--------------------------------------|--|
| 25.0<br>20.0                                                                      |         |            | 20.0       |                                    |                         |                                       |                                      |  |
| 15.0<br>10.0<br>5.0                                                               | 8.3     | 3.4        |            | 1.3                                | 0.0                     | 9.3                                   | Combustion Transportation LUC Onsite |  |
| 0.0                                                                               | Farming | Extraction | Production | <ul> <li>Transportation</li> </ul> | c Combustion            | C C C C C C C C C C C C C C C C C C C | <ul> <li>Upstream</li> </ul>         |  |
| 1 2 3 4 5 6                                                                       |         |            |            |                                    |                         |                                       |                                      |  |

### GREET Feedstock Carbon Intensity Module: FD-CIC



#### Direct Land Use Change Modeling & Carbon Accounting

ARGONNE FEEDSTOCK Carbon Intensity CALCULATOR INTERFACE (FD-CIC)

Provides the GHG emissions from different agricultural feedstock production: corn, rice, soy, sorghum, others:

- carbon intensity per unit of biomass produced
- Several land management practices options for users to explore their impacts on feedstock CI at the field level





### Farm Level GHG Emissions via GREET FD-CIC

- Multiple Feedstocks: Corn, soy, rice, etc.
- Hidden cell ranges and worksheets: unhide available
- SOC calculated on a county-bycounty basis for areas where USDA reports corn yields

|                                       | Reset to Corn Defa          | ault                | Corn CI Results    |
|---------------------------------------|-----------------------------|---------------------|--------------------|
| ualized farming input parameters      |                             |                     |                    |
| 1.0) Farm size                        | User Specific Value         | GREET Default Value | Unit               |
| 1.0.1) Farm size                      |                             | 1000                | 1000 acre          |
| 1.1) Yield                            | User Specific Value         | GREET Default Value | Unit               |
| 1.1.1) Corn yield                     |                             | 178.4               | 178.4 Bushels/acre |
| 1.2) Energy                           | User Specific Value         | GREET Default Value | Unit               |
| 1.2.1) Diesel                         |                             | 7.2                 | 7.2 Gallons/acre   |
| 1.2.2) Gasoline                       |                             | 1.3                 | 1.3 Gallons/acre   |
| 1.2.3) Natural gas                    |                             | 87.0                | 87.0 ft3/acre      |
| 1.2.4) Liquefied petroleum gas        |                             | 2.2                 | 2.2 Gallons/acre   |
| 1.2.5) Electricity                    |                             | 69.3                | 69.3 kWh/acre      |
| 1.3) Nitrogen Fertilizer              | Chart Area r Specific Value | GREET Default Value | Unit               |
| 1.3.1) Ammonia                        |                             | 49.0                | 49.0 lbs N/acre    |
| 1.3.2) Urea                           |                             | 36.3                | 36.3 lbs N/acre    |
| 1.3.3) Ammonium Nitrate               |                             | 3.2                 | 3.2 lbs N/acre     |
| 1.3.4) Ammonium Sulfate               |                             | 3.2                 |                    |
| 1.3.5) Urea-ammonium nitrate solution |                             | 50.5                |                    |
| 1.3.6) Monoammonium Phosphate         |                             | 6.3                 | 6.3 lbs N/acre     |
| 1.3.7) Diammonium Phosphate           |                             | 9.5                 | 9.5 lbs N/acre     |
|                                       | te later dita a Complete    |                     |                    |



FEEDSTOCK CI CALCULATOR

### Impact of Climate Smart Agriculture on Cradle-to-Farm Gate Emissions



### **Climate Smart Ag: Field Energy Considerations**

Table S6 Energy use for common farming operations (University of Nebraska-Lincoln Institute

of Agriculture and Natural Resources 2019)

| Operation                    | Plow | Chisel | Disk | Ridge | Strip- | No-  |
|------------------------------|------|--------|------|-------|--------|------|
|                              |      |        |      | Plant | till   | till |
| Total diesel fuel (gal/acre) | 5.28 | 3.34   | 2.71 | 2.69  | 1.75   | 1.35 |
| Tillage category             | СТ   | RT     | RT   | RT    | NT     | NT   |

Shifting agricultural practices to produce sustainable, low carbon intensity

feedstocks for biofuel production - Supporting Information

Xinyu Liu<sup>1</sup>, Hoyoung Kwon<sup>1</sup>, Daniel Northrup<sup>2</sup>, and Michael Wang<sup>1</sup>

## **Fertilizer Inputs**

 Table S2 Fertilizer inputs used to grow corn in nine states in 2010 and their carbon intensity

(unit: g CO2e/bushel of corn) (United States Department of Agriculture Economic Research

| Service 2010). | A bushel | l of corn is | equivalent to | 0.0254 | metric ton. |
|----------------|----------|--------------|---------------|--------|-------------|
|                |          |              | 1             |        |             |

|              | Ν                         | Р   | K   | Lime | Ν                                  | Р   | K   | Lime |
|--------------|---------------------------|-----|-----|------|------------------------------------|-----|-----|------|
|              | g nutrient/bushel of corn |     |     |      | g CO <sub>2</sub> e/bushel of corn |     |     |      |
| National     | 434                       | 153 | 169 | 1513 | 1630                               | 214 | 97  | 15   |
| Illinois     | 410                       | 226 | 246 | 2080 | 1562                               | 317 | 141 | 20   |
| Indiana      | 471                       | 185 | 311 | 2512 | 1846                               | 259 | 179 | 24   |
| Iowa         | 421                       | 129 | 153 | 1292 | 1668                               | 181 | 88  | 12   |
| Michigan     | 425                       | 113 | 267 | 1894 | 1895                               | 158 | 153 | 18   |
| Minnesota    | 354                       | 106 | 119 | 1129 | 1535                               | 149 | 68  | 11   |
| Nebraska     | 450                       | 81  | 14  | 588  | 1822                               | 114 | 8   | 6    |
| Ohio         | 478                       | 181 | 236 | 1694 | 1839                               | 254 | 135 | 16   |
| South Dakota | 553                       | 162 | 40  | 0    | 1897                               | 227 | 23  | 0    |
| Wisconsin    | 388                       | 112 | 153 | 2161 | 1505                               | 156 | 88  | 21   |





### Carbon Capture Sequestration and Utilization (CCSU)



#### **Carbon Capture Sequestration Treatment in GREET**

- GREET electricity requirement for CCS: 130 kWh/ton CO<sub>2</sub>
- includes compression for CO<sub>2</sub> transportation via pipeline
- $CO_2$  capture rate of 97.5%.
- electricity can be sourced from various US electricity grid aggregations (NERC regions) or renewables, or custom parameterization



#### **Direct Injection by Individual Plants or CO<sub>2</sub> Pipeline**

#### MARQUIS

#### CARBON & SUSTAINABILITY



Products & Services

#### ADM and Carbon Capture and Storage

CCS is an important technology to help us meet the growing demand for low-carbon energy and ingredient solutions.

#### **Red Trail Energy Begins Carbon Capture And Stora**

#### JULY 17, 2022 BY RED TRAIL ENERGY LLC

The first carbon capture and storage project allowed under state primacy in the U.S. has commenced operations. Red Trail Energy LLC announces it officially began carbon capture and storage (CCS) at its ethanol facility located near Richardton, North Dakota, on June 16.



#### Trailblazer Pipeline Company LLC One Step Closer to Transporting Carbon Dioxide Following FERC Order

October 30, 2023

Reading Time : 3 min



# SAF GHG Emissions in GREET and CORSIA





#### Example GREET: Corn Ethanol to Jet

- GREET default inputs
- Petroleum Aviation Fuel Baseline: 84.8 gCO2/MJ
- CCLUB iLUC (8.28 g CO<sub>2</sub>e/MJ Jet)
- CCS from fertilizer plant provides opportunity for further reduction: saving of upstream fertilizer production emissions (up to 3-4 gCO<sub>2</sub>/MI)



**GREET Corn ETJ Carbon Intensity** 

Copyright 2023 © Life Cycle Associates, LLC



#### Example CORSIA: Corn Ethanol to Jet

- GREET inputs with energy allocation
- Petroleum Aviation Fuel Baseline: 89 gCO2/MJ
- Default CORSIA iLUC (25.1 gCO<sub>2</sub>e/MJ, U.S. Ethanol to Jet)
- CCS from fertilizer plant provides opportunity for further reduction: saving of upstream fertilizer production emissions (up to 3-4 gCO<sub>2</sub>/MJ)



CORSIA Corn ETJ Carbon Intensity

Copyright 2023 © Life Cycle Associates, LLC

### **Questions** ???

