

The EU Approach for RFNBOs

January 2024

New renewable energy EU target for 2030

REDII

Indicative trajectory between 2021 and 2030 for national contributions to the EU target:

- 18% by 2022
- 43% by 2025
- 65% by 2027

European Commission

REDII rev.

Trajectories shall add up to the ref. points in 2022, 2025 and 2027 and to the EU 2030 binding RES target of at least 42.5%

RFNBO targets in industry

- > 42% target for the use of RFNBOs in industry by 2030 and 60% by 2035;
- > Excludes:
 - hydrogen used as intermediate products for the production of conventional transport fuels and biofuels;
 - hydrogen that is produced by decarbonizing industrial residual gases and is used to replace the specific gases from which it is produced.
 - hydrogen produced as a by-product or derived from by-products in industrial installations
- Takes into account use of other non-fossil energy sources to achieve decarbonisation:
 RFNBO target can be reduced by 20% if use of fossil hydrogen is no more than 23% in 2030 and 20% in 2035 and MS is on track towards its's national contribution for general RES target.

Revised RED

Transport tragets

REDII

At least 14% renewables in transport (road and rail)

+

At least 3.5% advanced biofuels

÷,

Incentives for advanced biofuels (double counting) + use of fuels in maritime and aviation (1.2x multiplier) At least 29% renewables in transport (all transport modes)

or

14.5% reduction of emission intensity of fuels

+

At least 5.5% advanced biofuels and RFNBOs (combined target of which at least 1%-point RFNBOs)

+

Incentives for advanced biofuels and RFNBOs (double counting)

+ 1

Incentives for their use in aviation and maritime (1.2x or 1.5x multipliers for advanced biofuels and RFNBO respectively)

New indicative target of 1.2% in the maritime sector

RFNBO = Renewable Fuels of Non Biological Origin

RFNBO delegated acts

Why do we need criteria for renewable hydrogen production?

Options for sourcing of electricity for production of renewable hydrogen

Case 1 Partial renewable hydrogen

Renewables share in electricity mix

Case 2 100% renewable hydrogen

- Direct connection between electrolyser and renewable power installation

Case 3 100% renewable hydrogen

- Electricity from the grid:
 - Additionality
 - Temporal correlation
 - Geographical correlation

Key principles for sour sourcing fully renewable electricity

Additionality	 Hydrogen production should add to the deployment of renewable energy 	
Temporal correlation	 Renewable hydrogen should be produced when renewable electricity is available 	
Geographic correlation	 There should be no grid congestion between the place where the renewable electricity is produced and where the renewable hydrogen is produced 	

How is the matter addressed?

Direct connection:

- Renewable power asset should be less than 36 months old
- Electricity is consumed **at the hours** that the renewable power asset is producing
- Renewable power asset is located at the site of the hydrogen production

Sourcing via the grid:

- **Power purchase agreement** with **unsubsidised** renewable power asset
- Renewable power asset should be less than 36 months old
- Hourly correlation between hydrogen production
 and renewable power generation
- Located in the same **bidding zone**

How is industrial uptake ensured?

No additionality	Jan '28: phase-in of additionality		Jan '38: end of grandfathering
Monthly correlation		Jan '30: mandatory phase-in of hourly correlation (optional from 07/27)	

Rules for highly decarbonised electricity mix

- Additionality no longer required if electricity mix is already largely decarbonised
 - Threshold to be achieved (bidding zone): emission intensity < 18g CO2/MJ
 - Reason: Hydrogen produced from such electricity achieves 70% emission savings
- Need to demonstrate that electricity is renewable:
 - Renewables PPA
 - Criteria of temporal an geographic correlation

Sunset clause

- Additionality no longer required if electricity mix is already largely based on renewable energy
 - Threshold to be achieved: RES- E share > 90%
 - Hydrogen produced from electricity that is 90% renewable achieves 70% emission savings
- Full-load hours should not exceed the RES-E share in order not to run at peak times

Methodology for determining GHG emissions of RFNBOs

• $E = e_i + e_p + e_{td} + e_u - e_{ccs}$

- where:
- E = total emissions from the use of the fuel (gCO_{2eq} / MJ fuel)
- e i = e i elastic + e i rigid e ex-use: emissions from supply of inputs (gCO_{2eq} / MJ fuel)
 - e i elastic = emissions from elastic inputs (gCO2eq / MJ fuel)
 - e i rigid = emissions from rigid inputs (gCO2eq / MJ fuel)
 - e ex-use = emissions from inputs' existing use or fate (gCO2eq / MJ fuel)
- e p = emissions from processing (gCO_{2eq} / MJ fuel)
- e td = emissions from transport and distribution (gCO_{2eq} / MJ fuel)
- e u = emissions from combusting the fuel in its end-use (gCO_{2eq} / MJ fuel)
- e ccs = emissions savings from carbon capture and geological storage (gCO_{2eq} / MJ fuel)

Interrelation of the GHG methodology and additionality delegated act

Renewable energy share of electricity

Carbon intensity of electricty

Requirements of additionality delegated act are <u>not</u> met

- Share or renewable electricity equals the share of renewable electricity in the country
- Default: Emissions savings are determined based on the average emission intensity of electricity in the country
- Alternatives based on marginal emission intensity of electricity

Requirements of additionality delegated act are met

• Electricity counts as fully renewable

 Electricity is considered as carbon neutral

Thank you

