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General introduction
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Global warming is NOT NEW

(From https://books.google.be/books?id=Tt4DAAAAMBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0?%20[sm]#v=onepage&q&f=false)

https://books.google.be/books?id=Tt4DAAAAMBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0?%20%5bsm%5d


General introduction
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Global warming is NOT under control

© EEPC 2023, Do not duplicate or distribute without written permission



CO2 emissions of chemical production worldwide 
from 2015 to 2030, by chemical source
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https://www.statista.com/statistics/272474/emissions-of-the-chemical-industry-since-2000/



SCOPE definition according GHG protocol
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GHG protocol for the chemical industry
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The problem of plastic waste
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Plastic production in EU-27 (PlasticsEurope, 2023)

ü 40% used for packaging
ü 40% of packaging plastic in incinerated (Kusenberg et al., 2022)



Life cycle assessment
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Definition

• Is a quantitative method in which the 
energy and raw material consumption, 
different types of emissions and other 
important factors related to a specific 
product are being measured, analyzed 
and summoned over the product's 
entire life cycle from an environmental 
point of view. 

• Is  considered to be the most 
comprehensive approach to assessing 
environmental impact.

• Is governed by two standards: ISO 
14040 and 14044



Case study
MPO* Incineration

Electricity
+ heat

Propane Steam 
cracking P+E

MPO Catalytic 
conversion P+E

MPO Pyrolysis Steam 
cracking P+E

MPO Gasification CH3OH 
synthesis MTO P+E
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Incineration

Steam
cracking

Baseline

Catalytic conversion

Steam cracking of 
pyrolysis oil

Gasification

*MPO = mixed polyolefin waste

Economic simulation cutoff



Chemical recycling as waste management strategy

MTO route (case 3) 
shows highest 
greenhouse gas 
emissions due to 
significant utility 
consumption.
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Economical aspects: capital expenditure
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Target capacity: 
1000 KTA of plastic

Steam cracking (Baseline B 
and Case 2) benefit from 
mature technology.



Economical aspects: sensitivity study
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Feed costs (FC) assumed at 
gate [EUR/ton]:

MPO: 325
Propane: 310

Sensitivity
Lower bound: FC*0
Upper bound: FC*2



MPO as olefin feedstock 
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In conventional steam crackers 
the fossil feedstock is the 
dominant contributor to GWP 
that accounts for ~65% 
according to (Mynko et al., 
2022)



Product recovery rates
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Recovery rate
!(#$%&'())
!(+,,&)

×100%

Feed: 
C3H8 for steam 

cracking
MPO for other cases



Product recovery rates
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Recovery rate
!(#$%&'())
!(+,,&)

×100%

Feed: 
C3H8 for steam 

cracking
MPO for other cases



Mass balance with a Fuel Use Exempt model “Fuel Use Exempt” Model
Deduction of process losses + auto-consumed energy, 
output used as fuels

Chain of Custody: Mass Balance

+   third-party certification: credible and transparent claims

MEERSCHMAN Annick <ame@cefic.be>
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Mass balance – a practical example of a steam cracker

2% losses 1,000 KT 980 KT

“Fuel Use Exempt” Model 
Deduction of process losses + energy/fuel (25%)

Steam 
Cracker

A
B
C
D

Allocated Recycled Content

Chain of Custody: Mass Balance

Fossil

Recycled 
feedstock 

(waste)

900 kT

100 kT

15%

8%

15%

60%

Internal energy

Sold as fuel

Intermediates for chemicals

Intermediates for plastic 
(ethylene, propylene and 
other monomers)

“Polymers only” Model 
Deduction of process losses (2%), 
auto-consumed energy (15%), 
output used as fuels (8%), non-polymer outputs (15%)

“Proportional ” Model 
Deduction of process losses (2%), auto-consumed 
energy (15%), output used as fuels (8%), 
proportionally split over different 
output materials

“Free attribution” Model 
Deduction of process losses (2%) 98 kT

75 kT

60 kT

30 kT ethylene
15 kT propylene
15 kT other  
monomers

Source for steam-cracker: Technoeconomics – Energy & Chemicals TECH 2018-
1 Ethylene program (Nexant)
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Brussels we have a problem… 
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Yields are actually higher than fossil!
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Feedstock Reference 
naphtha

MPO / 
naphtha

PE-film / 
naphtha

COT [°C] 820 850 820 850 820 850

P/E 0.77 0.62 0.73 0.59 0.72 0.58

Product yields [wt.%]

C1-C4 [wt.%] 67.9 75.8 68.5 75.9 70.1 74.9

PyGas (C5-
C9)

31.4 23.3 28.2 18.1 28.0 21.7

PFO (C10+) 0.7 1.0 3.3 6.0 2.0 3.4

Ethylene yields of pyrolysis oil/naphtha blends > pure 
naphtha

High olefin content à more secondary reactions à heavy products 
in C10+ range
à Higher coke formation and transfer line exchanger fouling
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Reference naphtha MPO/naphtha blend PE-film/naphtha blend

Opportunity for pyrolysis oils 
as steam cracker feedstock 

https://doi.org/10.1016/j.wasman.2022.01.033

Blending ratio: 1 part 
pyrolysis oil, 3 parts naphtha



Insights
̶ Catalytic conversion (Case 1) shows the most promising 

outcomes for achieving circularity, although it requires additional 
R&D.

̶ Steam cracking (Case 2) is most profitable due to higher 
ethylene yield.

̶ Gasification (Case 3) is economically unviable given current cost 
of MPO. To ensure economic viability, either subsidies or 
increased carbon pricing are required.

̶ Mass balance can result in an underestimation of recycled 
content 
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Agenda

üThe problem of 

plastic waste

üMethodology

üChemical recycling

üDisposal of plastic 

waste

üKey findings
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Plastic waste recycling scheme proposed by LCT  (Kusenberg et 
al., 2022)



System boundaries
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M, E = Material and Energy inputs to process and distribution
W     = Waste (gas, liquid, or solid) output from product, process, or distribution

Material flow of product component

Cradle – to gate

Cradle – to grave

Cradle – to gate approach has been selected due to 
high uncertainty of  further life cycle stage (since the 
products are base chemicals), in line with (WBCSD, 
2014)



Case 1. Catalytic conversion of MPO
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Dissolution Filtration

P+E
Gas-solid 

catalytic reactor
Liquid MPOWaste 

plastic

+ Reduced heating duty - Novel reactor design
+ Highest E+P recovery rate - Catalyst lifespan unknown
+ Uses FCC catalyst - Risk of catalyst poisoning



Case 2. Steam cracking of pyrolysis oil
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Pyrolysis Upgrading

P+E
Steam 
cracker

Pyrolysis 
oil

Waste 
plastic

+ Existing infrastructure - Requires oil decontamination
+ Mature technology - Sensitive to waste sorting/cleaning
+ Allows for blending with fossil feed - Operational risks for SC operators



Case 3. Plastic waste gasification
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Gasifier
Waste 
plastic

+ Less sensitive to feedstock quality - Low P+E recovery
+ Low operational risks - Highest CO2 emissions

- Complicated process

Methanol 
synthesis

Methanol to 
olefin plant P+E


