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General introduction
Iobal warming is NOT NEW
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The furnaces of the world are now burning about 2,000,000,000 tons of coal a year. When this is burned,
uniting with oxygen, it adds about 7,000,000,000 tons of carbon dioxide to the atmosphere yearly. This tends to
make the air a more effective blanket for the earth and to raise its temperature. The effect may be considerable

in a few centuries.
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https://books.google.be/books?id=Tt4DAAAAMBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0?%20%5bsm%5d
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CO2 emissions of chemical production worldwide
from 2015 to 2030, by chemical source

(in million metric tons)
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SCOPE definition according GHG protocol

* Scope 1—All Direct Emissions from the
activities of an organization or under
their control. Including fuel combustion
on site such as gas boilers, fleet vehicles
and air-conditioning leaks.

* Scope 2 — Indirect Emissions from

Scope 2 Scope 7 electricity purchased and used by the
INDIRECT DIRECT organization. Emissions are created
during the production of the energy and
eventually used by the organization.

- Scope 3 Scope 3 * Scope 3 — All Other Indirect Emissions
J INDIRECT RO from activities of the organization,
Lereadl i occurring from sources that they do not
goods and transportation B own or control. These are usually the
<esiin purchased electricity, steam, and dutribution = H
% [y il . investments. greatest share of the carbon footprint,
l - e i J m covering emissions associated with
capsta .
b e e e franchises business travel, procurement, waste and

s xm - ol products 222 ﬁ water.
= oy ot e Unlike LCA, GHG protocol

- oemares o e standards estimate the GHG
footprint and are based on

ISO 14064

Upstream activities Reporting company Downstream activities




GHG protocol for the chemical industry

‘....| applaud the breadth and depth of this unprecedented report that quantitatively analyzed pathways for
the chemical industry to reach net zero not only in scope 1 & 2, but also scope 3 upstream and
downstream....

..... The production of basic chemical intermediates in-scope for this report has a Scope 1, 2 & 3 emissions
of 2.3 Gt CO,,,, representing just under 4% of the 59 Gt global annual emissions and an estimated 72% of
all chemical system emissions. Within the 2.3 Gt, Scope 3 represents the majority at 64% (1.5 Gt CO,,,),
while Scope 1&2 only represent 36% (0.8 Gt CO,.,). The magnitude of Scope 3 in the chemical system is
driven by its dependence on fossil, leading to high upstream scope 3 emissions from oil and gas
extraction (0.5 Gt COZeq), as well as carbon-dense products such as plastics and urea resulting in high
associated downstream Scope 3 emissions (1.0 Gt COZeq). It is for this reason that focusing on Scope 3 in
the chemical system transition to net zero is so essential.....

‘....There Is growing recognition that the chemical industry needs to address its Scope 1&2 and,
increasingly, end-of-life Scope 3 emissions....

‘....The vast bulk of total in-scope system emissions stem from Scope 3 (¥64% today). Therefore, abating
Scope 3 is the biggest driver for system emissions reduction and the driver of the bulk of the technology
shifts needed to abate the system...’

From a report commissioned by The Center for Global Commons, The University of Tokyo, Japan. Published September 2022. (Refer
https://www.systemiq.earth/planet-positive-chemicals/)




The problem of plastic waste

Plastic production in EU-27 (PlasticsEurope, 2023)
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v 40% used for packaging
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v 40% of packaging plastic in incinerated (Kusenberg et al., 2022)
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Life cycle assessment

Definition

* |s a quantitative method in which the
energy and raw material consumption,
different types of emissions and other
important factors related to a specific
product are being measured, analyzed
and summoned over the product's
entire life cycle from an environmental
point of view.

¢ Is considered to be the most
comprehensive approach to assessing
environmental impact.

« Is governed by two standards: ISO
14040 and 14044
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Case study
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Chemical recycling as waste management strategy

MTO route (case 3)
shows highest
greenhouse gas
emissions due to
significant utility
consumption.
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Economical aspects: capital expenditure
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Economical aspects: sensitivity study

Feed costs (FC) assumed at

gate [EUR/ton]:

MPO: 325
Propane: 310

Sensitivity
Lower bound: FC*0
Upper bound: FC*2
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MPO as olefin feedstock

5,42

Ol
|

In conventional steam crackers
the fossil feedstock is the
dominant contributor to GWP
that accounts for ~65%

according to (Mynko et al.,
2022)
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Product recovery rates

Recovery rate

9
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Product recovery rates
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Mass balance with a Fuel Use Exempt model

Fossil \ A Internal ener
feedstock Process i
B Sold as fuel
Recycled Pla nt Intermediates for chemicals
feedstock N Site

Intermediates for plastic

(waste)

: Allocated Recycled Content

Chain of Custody: Mass Balance

Replacing Fossil Feedstock

NN

] 8 + third-party certification: credible and transparent claims
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Mass balance — a practical example of a steam cracker

“Free attribution” Model

Deduction of process losses (2%) 98 kT

1,000 KT 2% losses 980 KT

Steam B 8% Soldas fuel
Recycled Cracker C 159  Intermediates for chemicals ”POIVmerS Only" Model
feedstock D 60% Intermediates for plastic Deduction of process losses (2%), 60 kT
(waste) (ethylene, propylene and .
other monomers) auto-consumed energy (15%),

output used as fuels (8%), non-polymer outputs (15%)

Allocated Recycled Content

“Proportional ” Model
Deduction of process losses (2%), auto-consumed

. 15%), output used Is (8%),
Chain of Custody: Mass Balance energy (15%), output used as fuels (8%)

proportionally split over different 30 kT ethylene
output materials 15 kT propylene
——
— . 15 kT other
- .’ *. monomers
GHENT h‘ Bl
UNIVERSITY e e A Source for steam-cracker: Technoeconomics — Energy & Chemicals TECH 2018- 17
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Brussels we have a problem...
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Yields are actually higher than fossil!

30 ®m Methane = Ethylene mPropylene m1,3-butadiene
27.0 28.0 27.5
25 A
52 9 23.6
21.8
20
NS
s 16.9 17.0
g 16.8 16.7 16.4 16.0
o 15 A
S 13.4 13.0 12.9
$
10.3 99 10.3
10 -
5.6 5.7
- 46 5.1 I 5.2 | 5.4
0 i
820 850 820 850 820 850

Reference naphtha MPO/naphtha blend

PE-film/naphtha blend

Ethylene yields of pyrolysis oil/naphtha blends > pure

Opportunity for pyrolysis oils

as steam cracker feedstock
https://doi.org/10.1016/j.wasman.2022.01.033

Blending ratio: 1 part
pyrolysis oil, 3 parts naphtha

Feedstock Reference | MPO/ PE-film /

naphtha | naphtha | naphtha

COT[°C] | 820 850 | 820 850 | 820 850

P/E  |0.77 0.62|0.73 0.59|0.72 0.58
Product yields [wt.%]

C,-C, [wt.%]|67.9 75.8|68.5 75.9|70.1 74.9

PVG::)(CS' 31.4 23.3(28.2 18.1|28.0 21.7

PFO(Cy) | 07 1.0 |33 60 |20 34|

High olefin content 2 more secondary reactions = heavy products

in Cyy, range

— Higher coke formation and transfer line exchanger fouling




Insights

— Catalytic conversion (Case 1) shows the most promising
outcomes for achieving circularity, although it requires additional
R&D.

— Steam cracking (Case 2) is most profitable due to higher
ethylene yield.

— Gasification (Case 3) is economically unviable given current cost
of MPO. To ensure economic viabillity, either subsidies or
iIncreased carbon pricing are required.

— Mass balance can result in an underestimation of recycled
content
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LABORATORY FOR CHEMICAL TECHNOLOGY
Technologiepark 125, 9052 Ghent, Belgium

= info.lct@ugent.be
T 003293311757

https://www.Ict.ugent.be
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v Key findings
Plastic waste recycling scheme proposed by LCT (Kusenberg et

T 0 &~ al., 2022)
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System boundaries

I I
e I
Lo M, E M, E M, E M, E )
: : |
i i 4 | 4 A 4 \ | :
1 ] _ I
Lo Raw Material Ma terial Use & N Re tirement Treatment :
I Acquisition | Processing | Service | & Recovery | Disposal !
| :
4 |
| v M I
| .
P reuse |
| | |
Lo remanufacture |
. ' - ’
| |
1
L clo sed-loop recycle ) open-loop i
| ! recycle i
: R —— ol :
|
= i
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M, E = Material and Energy inputs to process and distribution Cradle —to grave

W = Waste (gas, liquid, or solid) output from product, process, or distribution

- Material flow of product component

Cradle — to gate approach has been selected due to
high uncertainty of further life cycle stage (since the

] EE B products are base chemicals), in line with (\WBCSD,
aHENT e S
UNIVERSITY 2014)
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Case 1. Catalytic conversion of MPO

Waste Liquid MPO Gas-solid
plastic catalytic reactor

P+E

Dissolution > Filtration
+ Reduced heating duty - Novel reactor design
+ Highest E+P recovery rate - Catalyst lifespan unknown
+ Uses FCC catalyst - Risk of catalyst poisoning

-
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Case 2. Steam cracking of pyrolysis oll

Waste
plastic oll

>

_
&

_—

Pyrolysis

Pyrolysis

-

+ Existing infrastructure
+ Mature technology
+ Allows for blending with fossil feed
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I 1 S
GHENT G-

UNIVERSITY

DRIVING CHEMICAL TECHNOLOGY

Steam
cracker

P+E

Upgrading

-

- Requires oil decontamination
- Sensitive to waste sorting/cleaning
- Operational risks for SC operators
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Case 3. Plastic waste gasification

Waste Methanol Methanol to
plastic Gasifier synthesis olefin plant

P+E

+ Less sensitive to feedstock quality - Low P+E recovery
+ Low operational risks - Highest CO2 emissions
- Complicated process
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